
7/29/2021 7/29/2021

Comp311- Lab Linux

Instructor :Murad Njoum

Lab5
Lab5. Shell Usage and Configuration (I)

Kingsoft Office

After completing this lab, the student should be able to:

- Become familiar with common Linux shells.

- Recognize and manipulate system and user defined shell

variables.

- Identify and use shell functions like command substitution,

 aliasing, command line editing and file name completion.

Objectives

 Linux Shells:

 The shell contains

• an interpreter :It is the main program used by the user to access and

use the Linux operating system. When the user enters a command and hits

the Return key the shell checks the command and rejects or accepts it.

• Accepted commands are then passed on to the Kernel part of the OS for

execution and the result is displayed by the shell to the user.

You are placed into a shell when you

• open a new terminal/console window

• start a shell from a terminal/console window, e.g., by running bash

• open a remote text-based connection as with through the program ssh

Like PuTTy, openSSH

For more info : www.ssh.com

 Linux Shells:

Linux provides several different shells

sh (the bourne shell)

csh – incorporated new ideas like history and command line editing

tcsh – updated version of csh

bash – updated version of Bourne shell (bourne again shell)

ksh (korn shell)

7/29/2021

Interpreter Compiler

Translates program one statement at a
time.

Scans the entire program and
translates it as a whole into machine
code.

It takes less amount of time to analyze
the source code but the overall
execution time is slower.

It takes large amount of time to
analyze the source code but the overall
execution time is comparatively faster.

No intermediate object code is
generated, hence are memory
efficient.

Generates intermediate object code
which further requires linking, hence
requires more memory.

Continues translating the program until
the first error is met, in which case it
stops. Hence debugging is easy.

It generates the error message only
after scanning the whole program.
Hence debugging is comparatively
hard.

Programming language like Python,
Ruby use interpreters.

Programming language like C, C++ use
compilers.

Complier Vs Interpreter

• Output instruction, form is
– echo string
– Where string is any combination of literal characters,

$variables or $(Linux commands) `Linux commands`

• If you forget a $ you get the variable name
without its value
– echo Hello $FIRST LAST

• outputs Hello followed by the value in FIRST followed by
LAST literally because we forgot the $

• Assume FIRST=Fadi, LAST=Zidan
– echo Hello $FIRST $LAST

• outputs Hello Fadi Zidan

– echo “Hello $FIRST $LAST”
• outputs Hello Fadi Zidan

– echo ‘Hello $FIRST $LAST’
• outputs Hello $FIRST $LAST

echo

Shells have many features and functions which allow them to perform their work. The

following are some of those features or functionalities:

Variable Substitution:

A shell is a program that has several variables that help the shell do its work. Many of

those variables are system defined variables (usually written using upper case letters)

and

some may be user defined variables.

Let us consider some of the system defined variables to see how the shell uses them.

PATH variable:

Run the command:

echo PATH

What did you get?______________________.

Now run the command:

echo $PATH

What did you get?__

PATH

The full PATH

/home/mnjoum/.local/share/umake/bin:/usr/

local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

 Variable Substitution:

To display the value of a variable you need to precede it with the ($) character.

The PATH variable is used by the shell to locate commands for execution. Let us see

how the shell is affected by modifying that variable.

Run the following commands:

SAVEPATH=$PATH (saves the value of PATH in variable SAVEPATH)

ls
Did it work?

PATH=/etc

ls
Does it work
now?_____________________.

Why?__.

Restore the original value for variable PATH.

Command?_________________________.

Yes

NO

The path for command ls (/bin) was changed, no the interpreter does

identified

PATH=$ SAVEPATH

 Variable Substitution:

 Now try the command:

ls Does it work now? ____________________________.

You can add directories to your PATH. To add the directory /etc to the end of the PATH

use the command:

PATH=$PATH:/etc

Try it and then use the command:

echo $PATH

Was it added as expected? _____________________.

Yes

Yes

PWD and PS1 Variables:

Display the value of the PWD variable.

Command?_____________________________.

Change your directory to /etc. Command?_____________________________.

What is the value of PWD now?_______________________________.

How do you think the pwd command works?__________________________________.

Now run the following command:

PS1=”Hello >”

What happened to your prompt?______________________________.

Now run the command:

PS1=“$PWD >”

What happened?__.

echo $PWD Print the current directory working

cd /etc

echo $PWD Or pwd

cd .. cd.. cd.. , echo $PWD

Hello>

PWD and PS1 Variables:

There are several other variables such as HOME, PS2, SHELL, MAIL and so forth. To

display the variables in your shell run the command:

set | more

List three more variables other than the ones mentioned above and their values:

1- ____________________________________.

2- ____________________________________

3- ____________________________________

Run the command:

env | more

Is the output the same as the set command or different? ______________.

What is the difference between set and env? (hint: Check the man pages).

___.

different

Set :variable are set in local shell (bash), but env: set variable as global for shells

• We don’t generally use our own variables (unless we
are shell scripting) but there are useful environment
variables, defined by the OS

• To see your environment variables, type env
– HOSTNAME – name of your computer
– SHELL – name of the current shell (e.g., /bin/bash)
– USER – your user name
– HOME – your home directory
– PWD – current working directory (this is used by the pwd

command)
– HISTLIST – number of commands to be retained in your

history list
– PS1 – your prompt defined
– PATH – a list of directories that bash will examine with

every command

Environment Variables

Practice:

AGE=21

AGE=$((AGE+1)) // AGE becomes 22

AGE=$AGE+1

this sets AGE to be “21+1” (that is, the characters 2, 1,

+, 1)

NAME=“$FIRST $LAST”

if $FIRST is Ahmad and $Last is Zaid then NAME is

“Ahmad Zaid”

Y=20

X=$((Y/5))

integer division, X is the quotient

Q=$((Y%5))

integer remainder, Q is the remainder

A=$(((X+1)*Y))

added parents to control order of operations

7/29/2021

User-Defined Variables

Users can define their own shell variables to simplify their work or store values for later

use. Under your home directory (cd) create the following structure:

mkdir project

mkdir project/myfiles OR mkdir –p project/myfiles

touch project/myfiles/firstfile

Now create a new variable called myprojfiles as follows:

myprojfiles=$HOME/project/myfiles

Now you can use the new variable to manipulate your project directory. Try the

following commands and write what each does:

vi $myprojfiles/firstfile

__.

cp /etc/passwd $myprojfiles

__.

touch good; mv $HOME/good $myprojfiles

___.

 To summarize, a shell checks a command for any variables (words starting with $) and

substitutes them with their values before executing the command. E.g. in the command

echo $PWD the shell first substitutes the variable PWD for its value and then executes

the echo command on that value.

Command Substitution:

Another important shell function is command substitution where the shell substitutes

commands with their results before executing the main command.

 Try the command:

date

What is the result?___.

Now try to command:

echo $(date)

What is the result?___.

The result of both commands is the same, but for different reasons. In the first case,

command date is executed and the result of the command is displayed. In the second

case, the shell first substitutes the result of the command date (which is indicated using

the $(command) notation) and then executes the main command echo on that result.

Thus, the output of the date command is used as an argument for command echo.

 Command substitution is very useful for saving command outputs in variables for later

use. Run the command:

grep yourusername /etc/passwd | cut -d: -f5 | cut -d_ -f1

What is the result? ___.

Current date

Current date

Practice:

To get that result again you need to run the same command each time. You can save the

result of that command in a variable for later use using command substitution as follows:

firstname=$(grep yourusername /etc/passwd | cut -d: -f5 | cut -d_ -f1)

Now you can use the variable firstname whenever you need it. This is especially useful

in shell scripts. You can run the following command for example:

echo how are you doing $firstname?

The notation $(command) is common to many shells, but not all. The csh shell does not

use that notation. There is another older notation which is understood by most if not all

shells. Instead of $(command) the notation used is `command` (The single quote used

here is the one below the ESC key on the keyboard).

Try echo `ls`

Try the new notation to get your last name and save it in a variable called lastname.

Command:__.

7/29/2021

Aliasing

Another function of the shell is aliasing which is basically used to give new simple

names to complicated or long commands. For example:

alias dir=”ls -ali”

dir

The new alias dir will now behave exactly as “ls –ali” when executed.

To display the aliases you already have on your system, run the command:

alias

List three aliases that you have and their values: (be careful , No space after=)

1- ___.

2- ___.

3- ___.

4- ___.

To cancel an alias, use the unalias command. For example:

unalias dir (cancels the dir alias)

Always be careful of aliases that have the same names as commonly used commands.

An alias such as the following may be very dangerous. Do NOT try it.

alias ls=”rm -f *”

alias cls=”clear”

alias vi=‘vim’

alias his= “history”

alias sl= “ls”

• You will define aliases to

– save typing (shorten commands)

– simplify complex commands

– eliminate directory paths

– safety (for instance, forcing the –i option with rm)

– Typos (if you are commonly making the same
mistake, for instance typing sl instead of ls)

• alias sl=ls

• Defined aliases at the command line prompt

– but the alias is then only known for this session, close
the shell, lose the alias

Why we use Aliases ?

7/29/2021

Command Line Editing

The commands you enter on the command line are stored by the shell in a history file

called .bash_history under the bash shell. To use or modify commands you executed

earlier you can use the arrow keys. The up and down keys are used to get commands and

the left and right arrows are used to move and modify a command if needed.

Try to view the content of .bash_history file?

Rename (use the mv command) the file .bash_history to .save_history.

Command: __________________________________.

Exit from the system and log back in.

Check the commands stored in .bash_history. What did you find? Why?

__

___.

What can you do to restore all your previous commands?

__.

vi .bash_history

mv .bash_history .save_history

mv .bash_history .save_history

.bash_history file doesn’t exist (renamed with new file name , .save_history)

mv .save_history .bash_history

• Saves you from having to type a full directory or file name
– Type part of the name<tab>

– If unique, Bash completes the name

– If not unique, Bash beeps at you, type <tab><tab> to get a
listing of all matches

• Example: current directory contains these files
– forgotten.txt frank.txt fresh.txt

– functions.txt funny.txt other_stuff.txt

• You type less fo<tab>
– bash completes with forgotten.txt

• You type less fr<tab>
– bash beeps at you

• You type less fr<tab><tab>
– bash lists frank.txt fresh.txt

 File Name Completion Tab, ESCESC

Try

$ cd /etc

$ less update<TAB>

$ less lib<TAB><TAB>

$less lib<ESC>…<ESC>

• If you enter a variable or alias from the command
line, that item is only defined in the current session

– If you type bash, you enter a new session

– If you exit this session, you lose those definitions

– If you open another window, you do not have those
definitions

• It is easier to define these items in a script that is
executed at the start of each shell session

• This is where we will define our initial PATH variable
and any aliases

– We, as users, are free to edit these files to add to or
change these definitions and add our own definitions

Tailoring your bash Shell

7/29/2021

 Making changes permanent :

Many of the changes mentioned above such as creating new variables, changing existing

variables, or creating aliases will disappear after exiting and logging back into the

system. To make those changes permanent, they need to be added to your environment

file (.bash_profile). Be very careful when modifying this file and always copy it first

before making modifications.

Copy the file .bash_profile to file .save_bash_profile

Command:__.

Add the following to the end of your .bash_profile file:

1- Add the . (current directory) to your PATH variable

2- Add a variable called myproj with the name of a project directory under your

home directory.

Save the file and quit.

Exit the system and then log back in.

Check to see if the changes still exist on the system. Do they? ____________

cp .bash_profile .save_profile

PATH=$PATH: . :

Yes

myproj=$HOME/project/myfiles

Thank You for attention !

Published By: Murad Njoum

